2011 Microchip Technology Inc.
DS39932D-page 55
PIC18F46J11 FAMILY
On devices that support it, the Deep Sleep mode is
entered by:
Setting the REGSLP (WDTCON<7>) bit (the
default state on device Reset)
Clearing the IDLEN bit (the default state on device
Reset)
Setting the DSEN bit (DSCONH<7>)
Executing the SLEEP instruction immediately after
setting DSEN (no delay in between)
In order to minimize the possibility of inadvertently enter-
ing Deep Sleep, the DSEN bit is cleared in hardware
two instruction cycles after having been set. Therefore,
in order to enter Deep Sleep, the SLEEP instruction must
be executed in the immediate instruction cycle after set-
ting DSEN. If DSEN is not set when Sleep is executed,
the device will enter conventional Sleep mode instead.
During Deep Sleep, the core logic circuitry of the
microcontroller is powered down to reduce leakage
current. Therefore, most peripherals and functions of
the microcontroller become unavailable during Deep
Sleep. However, a few specific peripherals and func-
tions are powered directly from the VDD supply rail of
the microcontroller, and therefore, can continue to
function in Deep Sleep.
Entering Deep Sleep mode clears the DSWAKEL regis-
ter. However, if the Real-Time Clock and Calendar
(RTCC) is enabled prior to entering Deep Sleep, it will
continue to operate uninterrupted.
The device has dedicated low-power Brown-out Reset
(DSBOR) and Watchdog Timer Reset (DSWDT) for
monitoring voltage and time-out events in Deep Sleep.
The DSBOR and DSWDT are independent of the stan-
dard BOR and WDT used with other power-managed
modes (Run, Idle and Sleep).
When a wake event occurs in Deep Sleep mode (by
MCLR Reset, RTCC alarm, INT0 interrupt, ULPWU or
DSWDT), the device will exit Deep Sleep mode and
perform a Power-on Reset (POR). When the device is
released from Reset, code execution will resume at the
device’s Reset vector.
4.6.1
PREPARING FOR DEEP SLEEP
Because VDDCORE could fall below the SRAM retention
voltage while in Deep Sleep mode, SRAM data could
be lost in Deep Sleep. Exiting Deep Sleep mode
causes a POR; as a result, most Special Function
Registers will reset to their default POR values.
Applications needing to save a small amount of data
throughout a Deep Sleep cycle can save the data to the
general purpose DSGPR0 and DSGPR1 registers. The
contents of these registers are preserved while the
device is in Deep Sleep, and will remain valid throughout
an entire Deep Sleep entry and wake-up sequence.
4.6.2
I/O PINS DURING DEEP SLEEP
During Deep Sleep, the general purpose I/O pins will
retain their previous states.
Pins that are configured as inputs (TRIS bit set) prior to
entry into Deep Sleep will remain high-impedance
during Deep Sleep.
Pins that are configured as outputs (TRIS bit clear)
prior to entry into Deep Sleep will remain as output pins
during Deep Sleep. While in this mode, they will drive
the output level determined by their corresponding LAT
bit at the time of entry into Deep Sleep.
When the device wakes back up, the I/O pin behavior
depends on the type of wake-up source.
If the device wakes back up by an RTCC alarm, INT0
interrupt, DSWDT or ULPWU event, all I/O pins will
continue to maintain their previous states, even after the
device has finished the POR sequence and is executing
application code again. Pins configured as inputs during
Deep Sleep will remain high-impedance, and pins con-
figured as outputs will continue to drive their previous
value.
After waking up, the TRIS and LAT registers will be
reset, but the I/O pins will still maintain their previous
states. If firmware modifies the TRIS and LAT values for
the I/O pins, they will not immediately go to the newly
configured states. Once the firmware clears the
RELEASE bit (DSCONL<0>), the I/O pins will be
“released”. This causes the I/O pins to take the states
configured by their respective TRIS and LAT bit values.
If the Deep Sleep BOR (DSBOR) circuit is enabled, and
VDD drops below the DSBOR and VDD rail POR thresh-
olds, the I/O pins will be immediately released similar to
clearing the RELEASE bit. All previous state informa-
tion will be lost, including the general purpose DSGPR0
and DSGPR1 contents. See Section 4.6.5 “Deep
for additional
details about this scenario.
If a MCLR Reset event occurs during Deep Sleep, the I/O
pins will also be released automatically, but in this case,
the DSGPR0 and DSGPR1 contents will remain valid.
In all other Deep Sleep wake-up cases, application
firmware needs to clear the RELEASE bit in order to
reconfigure the I/O pins.
相关PDF资料
SFW15R-2STE1 SFW15R-2STE1-FFC/FPC CONN
PIC18F26J11-I/ML IC PIC MCU FLASH 64K 2V 28-QFN
PIC18F46K20-E/ML IC PIC MCU FLASH 32KX16 44QFN
PIC24FJ64GA002-I/SO IC PIC MCU FLASH 64KB 28SOIC
PIC16C711-04/P IC MCU OTP 1KX14 A/D 18DIP
PIC18LF26K22-I/SP IC PIC MCU 64KB FLASH 28SPDIP
PIC18F25K80-I/SP MCU PIC 32KB FLASH 28SDIP
DSPIC33FJ12MC201-I/SS IC DSPIC MCU/DSP 12K 20SSOP
相关代理商/技术参数
PIC18F45J11-I/PT 功能描述:8位微控制器 -MCU 32KB Flash 4KBRAM 12MIPS nanoWatt RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT
PIC18F45J11T-I/ML 功能描述:8位微控制器 -MCU 32KB Flash 4KBRAM 12MIPS nanoWatt RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT
PIC18F45J11T-I/PT 功能描述:8位微控制器 -MCU 32KB Flash 4KBRAM 12MIPS nanoWatt RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT
PIC18F45J50-I/ML 功能描述:8位微控制器 -MCU Full Spd USB 32KB 4KBRAM nanoWatt RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT
PIC18F45J50-I/PT 功能描述:8位微控制器 -MCU Full Spd USB 32KB 4KBRAM nanoWatt RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT
PIC18F45J50T-I/ML 功能描述:8位微控制器 -MCU Full Spd USB 32KB 4KBRAM nanoWatt RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT
PIC18F45J50T-I/PT 功能描述:8位微控制器 -MCU Full Spd USB 32KB 4KBRAM nanoWatt RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT
PIC18F45K20-E/ML 功能描述:8位微控制器 -MCU 32KB Flash 1536B RAM 25 I/O 8B RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT